Respiration rate is an important healthcare indicator, and it has become a popular research topic in remote healthcare applications with Internet of Things. Existing respiration monitoring systems have limitations in… Click to show full abstract
Respiration rate is an important healthcare indicator, and it has become a popular research topic in remote healthcare applications with Internet of Things. Existing respiration monitoring systems have limitations in terms of convenience, comfort, and privacy, etc. This paper presents a contactless and real-time respiration monitoring system, the so-called Wi-Breath, based on off-the-shelf WiFi devices. The system monitors respiration with both the amplitude and phase difference of the WiFi channel state information (CSI), which is sensitive to human body micro movement. The phase information of the CSI signal is considered and both the amplitude and phase difference are used. For better respiration detection accuracy, a signal selection method is proposed to select an appropriate signal from the amplitude and phase difference based on a support vector machine (SVM) algorithm. Experimental results demonstrate that the Wi-Breath achieves an accuracy of 91.2% for respiration detection, and has a 17.0% reduction in average error in comparison with state-of-the-art counterparts.
               
Click one of the above tabs to view related content.