LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

MSHGANMDA: Meta-Subgraphs Heterogeneous Graph Attention Network for miRNA-Disease Association Prediction.

Photo from wikipedia

MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time.… Click to show full abstract

MicroRNAs (miRNAs) influence several biological processes involved in human disease. Biological experiments for verifying the association between miRNA and disease are always costly in terms of both money and time. Although numerous biological experiments have identified multi-types of associations between miRNAs and diseases, existing computational methods are unable to sufficiently mine the knowledge in these associations to predict unknown associations. In this study, we innovatively propose a heterogeneous graph attention network model based on meta-subgraphs (MSHGATMDA) to predict the potential miRNA-disease associations. Firstly, we define five types of meta-subgraph from the known miRNA-disease associations. Then, we use meta-subgraph attention and meta-subgraph semantic attention to extract features of miRNA-disease pairs within and between these five meta-subgraphs, respectively. Finally, we apply a fully-connected layer (FCL) to predict the scores of unknown miRNA-disease associations and cross-entropy loss to train our model end-to-end. To evaluate the effectiveness of MSHGATMDA, we apply five-fold cross-validation to calculate the mean values of evaluation metrics Accuracy, Precision, Recall, and F1-score as 0.8595, 0.8601, 0.8596, and 0.8595, respectively. Experiments show that our model, which primarily utilizes multi-types of miRNAdisease association data, gets the greatest ROC-AUC value of 0.934 when compared to other state-of-the-art approaches. Furthermore, through case studies, we further confirm the effectiveness of MSHGATMDA in predicting unknown diseases.

Keywords: heterogeneous graph; disease; association; attention; mirna disease; meta subgraphs

Journal Title: IEEE journal of biomedical and health informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.