LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Continuous Estimation of Human Joint Angles From sEMG Using a Multi-Feature Temporal Convolutional Attention-Based Network

Photo from wikipedia

Intention recognition based on surface electromyography (sEMG) signals is pivotal in human-machine interaction (HMI), where continuous motion estimation with high accuracy has been the challenge. The convolutional neural network (CNN)… Click to show full abstract

Intention recognition based on surface electromyography (sEMG) signals is pivotal in human-machine interaction (HMI), where continuous motion estimation with high accuracy has been the challenge. The convolutional neural network (CNN) possesses excellent feature extraction capability. Still, it is difficult for ordinary CNN to explore the dependencies of time-series data, so most researchers adopt the recurrent neural network or its variants (e.g., LSTM) for motion estimation tasks. This paper proposes a multi-feature temporal convolutional attention-based network (MFTCAN) to recognize joint angles continuously. First, we recruited ten subjects to accomplish the signal acquisition experiments in different motion patterns. Then, we developed a joint training mechanism that integrates MFTCAN with commonly used statistical algorithms, and the integrated architectures were named MFTCAN-KNR, MFTCAN-SVR and MFTCAN-LR. Last, we utilized two performance indicators (RMSE and $\text{R}^{2}$) to evaluate the effect of different methods. Moreover, we further validated the performance of the proposed method on the open dataset (Ninapro DB2). When evaluating on the original dataset, the average RMSE of the estimations obtained by MFTCAN-KNR is 0.14, which is significantly less than the results obtained by LSTM (0.20) and BP (0.21). The average $\text{R}^{2}$ of the estimations obtained by MFTCAN-KNR is 0.87, indicating the anti-disturbance ability of the architecture. Moreover, MFTCAN-KNR also achieves high performance when evaluating on the open dataset. The proposed methods can effectively accomplish the task of motion estimation, allowing further implementations in the human-exoskeleton interaction systems.

Keywords: convolutional attention; network; feature temporal; temporal convolutional; estimation; multi feature

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.