LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

eXplainable AI Allows Predicting Upper Limb Rehabilitation Outcomes in Sub-Acute Stroke Patients

Photo by raspopovamarisha from unsplash

While stroke is one of the leading causes of disability, the prediction of upper limb (UL) functional recovery following rehabilitation is still unsatisfactory, hampered by the clinical complexity of post-stroke… Click to show full abstract

While stroke is one of the leading causes of disability, the prediction of upper limb (UL) functional recovery following rehabilitation is still unsatisfactory, hampered by the clinical complexity of post-stroke impairment. Predictive models leading to accurate estimates while revealing which features contribute most to the predictions are the key to unveil the mechanisms subserving the post-intervention recovery, prompting a new focus on individualized treatments and precision medicine in stroke. Machine learning (ML) and explainable artificial intelligence (XAI) are emerging as the enabling technology in different fields, being promising tools also in clinics. In this study, we had the twofold goal of evaluating whether ML can allow deriving accurate predictions of UL recovery in sub-acute patients, and disentangling the contribution of the variables shaping the outcomes. To do so, Random Forest equipped with four XAI methods was applied to interpret the results and assess the feature relevance and their consensus. Our results revealed increased performance when using ML compared to conventional statistical approaches. Moreover, the features deemed as the most relevant were concordant across the XAI methods, suggesting good stability of the results. In particular, the baseline motor impairment as measured by simple clinical scales had the largest impact, as expected. Our findings highlight the core role of ML not only for accurately predicting the individual outcome scores after rehabilitation, but also for making ML results interpretable when associated to XAI methods. This provides clinicians with robust predictions and reliable explanations that are key factors in therapeutic planning/monitoring of stroke patients.

Keywords: xai; sub acute; rehabilitation; upper limb; stroke patients; stroke

Journal Title: IEEE Journal of Biomedical and Health Informatics
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.