Atrial fibrillation (AF) is an increasing medical burden worldwide, and its pathological manifestations are atrial tissue remodeling and low-pressure atrial tissue fibrosis. Due to the inherent defects of medical image… Click to show full abstract
Atrial fibrillation (AF) is an increasing medical burden worldwide, and its pathological manifestations are atrial tissue remodeling and low-pressure atrial tissue fibrosis. Due to the inherent defects of medical image data acquisition systems, the acquisition of high-resolution cardiac magnetic resonance imaging (CMRI) faces many problems. In response to these problems, we propose the Progressive Feedback Residual Attention Network (PFRN) for CMRI super-resolution. Specifically, we directly perform feature extraction on low-resolution images, retain feature information to a large extent, and then build multiple independent progressive feedback modules to extract high-frequency details. To accelerate network convergence and improve image reconstruction quality, we implement the MS-SSIM-L1 loss function. Furthermore, we utilize the residual attention stack module to explore the image's internal relevance and extract the low-resolution image's detailed features. Extensive benchmark evaluation shows that PFRN can improve the detailed information of the image SR reconstruction results, and the reconstructed CMRI has a better visual effect.
               
Click one of the above tabs to view related content.