LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

UE throughput guaranteed small cell on/off algorithm with machine learning

Ultra-dense network (UDN) has been considered a promising solution to improve the signal quality of cell edge UEs and enhance the serving coverage. However, a large number of small cells… Click to show full abstract

Ultra-dense network (UDN) has been considered a promising solution to improve the signal quality of cell edge UEs and enhance the serving coverage. However, a large number of small cells causes severe inter-cell interference and high energy consumption, and efficient small cell management is an important issue. In this paper, a UE throughput guaranteed small cell on/off algorithm in UDN environment is proposed to solve the problem of UE throughput reduction due to small cell off process. The proposed small cell on/off algorithm with machine learning is executed by the following processes: First, the network attributes that affect UE throughput are analyzed. Second, the correlation between UE throughput and network attributes is evaluated through multiple linear regression analysis. Third, through understanding the correlation between UE throughput and network attributes, we determine the proper criteria for small cell on/off process. Simulation results show that the proposed small cell on/off algorithm can improve the total network energy efficiency as well as efficiently ensure sufficient UE throughput. Compare to the conventional algorithm, the proposed algorithm shows more than 75% improvements of average network energy efficiency. whole network.

Keywords: small cell; cell algorithm; cell; throughput guaranteed; network; guaranteed small

Journal Title: Journal of Communications and Networks
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.