LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of Self-Heating Effect on Transistor Characterization and Reliability Issues in Sub-10 nm Technology Nodes

Photo from wikipedia

FinFET and fully depleted silicon-on-insulator (FDSOI) structures could further improve transistor’s performance and, however, also introduce some new problems, especially the increasingly severer self-heating effect (SHE). In this paper, by… Click to show full abstract

FinFET and fully depleted silicon-on-insulator (FDSOI) structures could further improve transistor’s performance and, however, also introduce some new problems, especially the increasingly severer self-heating effect (SHE). In this paper, by utilizing the ultra-fast sub-1 ns measurement technique, I–V characteristics of FinFETs and FDSOI devices at different switch speeds are obtained. Furthermore, dynamic SHE phenomena as well as the time-resolved channel temperature change during transistor’s switch on and off are able to be experimentally observed. And, more accurate device parameters like ballistic transport efficiency are extracted by the ultra-fast measurements. Moreover, it is experimentally confirmed that several nanoseconds are required to heat up the channel of transistors by the direct electrical characterization and, therefore, in sub-10 nm devices, SHE might be alleviated under high frequency/speed operations.

Keywords: heating effect; characterization; self heating; impact self; transistor

Journal Title: IEEE Journal of the Electron Devices Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.