LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A High-Efficiency High-Density Wide-Bandgap Device-Based Bidirectional On-Board Charger

Photo from wikipedia

This paper proposes a novel two-stage topology for a 6.6-kW on-board charger. The first stage, employing an interleaved bridgeless totem-pole ac/dc in critical conduction mode to realize zero-voltage switching, is… Click to show full abstract

This paper proposes a novel two-stage topology for a 6.6-kW on-board charger. The first stage, employing an interleaved bridgeless totem-pole ac/dc in critical conduction mode to realize zero-voltage switching, is operated at over 300 kHz. A bidirectional CLLC resonant converter operating at 500 kHz is chosen for the second stage. A variable dc-link voltage is adopted to track the wide battery voltage range, so that the CLLC resonant converter can always operate at its most efficient point. The 1.2-kV SiC devices are adopted for the ac/dc stage and the primary side of dc/dc stage, while 650-V GaN devices are used for the secondary side of dc/dc stage. In addition, PCB winding coupled inductors and integrated transformer are implemented in ac/dc stage and dc/dc stage, respectively, for the purpose of high density and manufacture automation. The proposed structure is demonstrated to have 37-W/in3 power density and above 96% efficiency over the entire battery voltage range, which far exceeds the current practice.

Keywords: high density; stage; board charger; density

Journal Title: IEEE Journal of Emerging and Selected Topics in Power Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.