LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Active Voltage Balancing Control Based on Adjusting Driving Signal Time Delay for Series-Connected SiC MOSFETs

Photo from wikipedia

Limited by low availability, high price, and poor switching performance of high-voltage power devices, connecting low-voltage devices in series to block much higher voltages is always an option. However, severe… Click to show full abstract

Limited by low availability, high price, and poor switching performance of high-voltage power devices, connecting low-voltage devices in series to block much higher voltages is always an option. However, severe voltage unbalance during turn-off transient remains to be solved. Most of the existing methods designed for low-speed silicon (Si) insulated gate bipolar transistor (IGBT) cannot be directly transplanted to the series-connected silicon carbide (SiC) MOSFETs with high switching speed. To maximum the switching performance of SiC MOSFETs, an elegant implementation of adjusting driving signal time delay method is proposed. In addition, a simplified model during drain–source voltage rising transient is discussed to basically reveal features and problems of the series-connected SiC MOSFETs. The factors affecting the appropriate time delay are discussed as well, especially the influence of the load current. The simplified model and the implementation are both verified by experiments. Indeed, the proposed active voltage balancing control works well and has no penalty of sacrificing switching performance of SiC MOSFETs.

Keywords: voltage; time delay; sic mosfets; series connected

Journal Title: IEEE Journal of Emerging and Selected Topics in Power Electronics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.