LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

AERO: Design Space Exploration Framework for Resource-Constrained CNN Mapping on Tile-Based Accelerators

Photo from wikipedia

Analog In-Memory Compute (AIMC) arrays can store weights and perform matrix-vector multiplication operations for Deep Convolutional Neural Networks (CNNs). A number of recent efforts have integrated AIMC arrays into hybrid… Click to show full abstract

Analog In-Memory Compute (AIMC) arrays can store weights and perform matrix-vector multiplication operations for Deep Convolutional Neural Networks (CNNs). A number of recent efforts have integrated AIMC arrays into hybrid digital-analog accelerators in a multi-layer parallel manner to achieve energy efficiency and high throughput. Multi-layer parallelism on large-scale tile-based architectures need efficient mapping support at the processing element (PE)-level (e.g., digital or analog processing elements) and tile-level. To find the most efficient architectures, fast and accurate design space exploration (DSE) support is required. In this paper, a novel DSE framework, AERO, is presented to characterize a CNN inference workload executing on hybrid tile-based architectures that supports multi-layer parallelism. Three characteristics can be seen in our DSE framework: (1) It presents a hierarchical Tile/PE-level mapping exploration strategy including inter-layer interaction, and allowing layer fusion/splitting configurations for PE-level mapping optimization. (2) It unlocks different Performance, Power and Area (PPA) exploration points under both sufficient and limited resource constraints, while limited resource case is not considered in prior works of multi-layer parallel architectures. The impact of weight loading and weight stationary mapping are analyzed for better insights into hybrid tile-based architectures. (3) It incorporates a detailed PPA model that supports a broad range of hybrid digital and analog units in a tile. Experimental case-studies are performed for realistic and relevant benchmarks such as MLP, CNNs (Lenet-5, Resnet-18,-34,-50 and −101).

Keywords: tile; multi layer; tile based; resource; framework; exploration

Journal Title: IEEE Journal on Emerging and Selected Topics in Circuits and Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.