LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Wireless Powered Sensor Networks for Internet of Things: Maximum Throughput and Optimal Power Allocation

Photo by appolinary_kalashnikova from unsplash

This paper investigates a wireless powered sensor network, where multiple sensor nodes are deployed to monitor a certain external environment. A multiantenna power station (PS) provides the power to these… Click to show full abstract

This paper investigates a wireless powered sensor network, where multiple sensor nodes are deployed to monitor a certain external environment. A multiantenna power station (PS) provides the power to these sensor nodes during wireless energy transfer phase, and consequently the sensor nodes employ the harvested energy to transmit their own monitoring information to a fusion center during wireless information transfer (WIT) phase. The goal is to maximize the system sum throughput of the sensor network, where two different scenarios are considered, i.e., PS and the sensor nodes belong to the same or different service operator(s). For the first scenario, we propose a global optimal solution to jointly design the energy beamforming and time allocation. We further develop a closed-form solution for the proposed sum throughput maximization. For the second scenario in which the PS and the sensor nodes belong to different service operators, energy incentives are required for the PS to assist the sensor network. Specifically, the sensor network needs to pay in order to purchase the energy services released from the PS to support WIT. In this case, this paper exploits this hierarchical energy interaction, which is known as energy trading. We propose a quadratic energy trading-based Stackelberg game, linear energy trading-based Stackelberg game, and social welfare scheme, in which we derive the Stackelberg equilibrium for the formulated games, and the optimal solution for the social welfare scheme. Finally, numerical results are provided to validate the performance of our proposed schemes.

Keywords: energy; wireless powered; power; powered sensor; sensor nodes; sensor

Journal Title: IEEE Internet of Things Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.