LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Joint Range-Doppler-Angle Estimation for Intelligent Tracking of Moving Aerial Targets

Photo by benkoorengevel from unsplash

In the new era of integrated computing with intelligent devices and system, moving aerial targets can be tracked flexibly. The estimation performance of traditional matched filter-based methods would deteriorate dramatically… Click to show full abstract

In the new era of integrated computing with intelligent devices and system, moving aerial targets can be tracked flexibly. The estimation performance of traditional matched filter-based methods would deteriorate dramatically for multiple targets tracking, since the weak target is masked by the strong target or the strong sidelobes. In order to solve the problems mentioned above, this paper aims at developing a joint range-Doppler-angle estimation solution for an intelligent tracking system with a commercial frequency modulation radio station (noncooperative illuminator of opportunity) and a uniform linear array. First, a gridless sparse method is proposed for simultaneous angle-range-Doppler estimation with atomic norm minimization. Based on the integrated computing, multiple workstations or servers of the data process center in the intelligent tracking system can cooperate with each other to accelerate the data process. Then a suboptimal method, which estimates three parameters in a sequential way, is proposed based on grid sparse method. The range-Doppler of each target is iteratively estimated by exploiting the joint sparsity in multiple surveillance antennas. A simple beamforming method is used to estimate the angles in turn by exploiting the angle information in the joint sparse coefficients. Simulation result and real test show that the proposed solution can effectively detect weak targets in an iterative manner.

Keywords: angle; intelligent tracking; estimation; doppler; range doppler

Journal Title: IEEE Internet of Things Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.