LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy Efficient Resource Allocation Algorithm in Energy Harvesting-Based D2D Heterogeneous Networks

Photo by theblowup from unsplash

Energy harvesting (EH) from ambient energy sources can potentially reduce the dependence on the supply of grid or battery energy, providing many benefits to green communications. In this paper, we… Click to show full abstract

Energy harvesting (EH) from ambient energy sources can potentially reduce the dependence on the supply of grid or battery energy, providing many benefits to green communications. In this paper, we investigate the device-to-device (D2D) user equipments (DUEs) multiplexing cellular user equipments (CUEs) downlink spectrum resources problem for EH-based D2D communication heterogeneous networks (EH-DHNs). Our goal is to maximize the average energy efficiency of all D2D links, in the case of guaranteeing the quality of service of CUEs and the EH constraints of the D2D links. The resource allocation problems contain the EH time slot allocation of DUEs, power and spectrum resource block (RB) allocation. In order to tackle these issues, we formulate an average energy efficiency problem in EH-DHNs, taking into consideration EH time slot allocation, power and spectrum RB allocation for the D2D links, which is a nonconvex problem. Furthermore, we transform the original problem into a tractable convex optimization problem. We propose joint the EH time slot allocation, power and spectrum RB allocation iterative algorithm based on the Dinkelbach and Lagrangian constrained optimization. Numerical results demonstrate that the proposed iterative algorithm achieves higher energy efficiency for different network parameters settings.

Keywords: allocation; based d2d; problem; heterogeneous networks; energy; energy harvesting

Journal Title: IEEE Internet of Things Journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.