LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

WiEps: Measurement of Dielectric Property With Commodity WiFi Device—An Application to Ethanol/Water Mixture

Photo by discoversavsat from unsplash

WiFi signal has become accessible everywhere, providing high-speed data transmission experience. Besides the communication service, channel state information (CSI) of the WiFi signals is widely employed for numerous Internet-of-Things (IoT)… Click to show full abstract

WiFi signal has become accessible everywhere, providing high-speed data transmission experience. Besides the communication service, channel state information (CSI) of the WiFi signals is widely employed for numerous Internet-of-Things (IoT) applications. Recently, most of these applications are based on the analysis of the microwave reflections caused by the physical movement of the objective. In this article, a novel contactless wireless sensing technique named WiEps is developed to measure the dielectric properties of the material, exploiting the transmission characteristics of the WiFi signals. In WiEps, the material under test is placed between the transmitter antenna and receiver antenna. A theoretical model is proposed to quantitatively describe the relationship between CSI data and dielectric properties of the material. During the experiment, the phase and amplitude of the transmitted WiFi signals are extracted from the measured CSI data. The parameters of the theoretical model are calculated using measured data from the known materials. Then, WiEps is utilized to estimate the dielectric properties of unknown materials. The proposed technique is first applied to the ethanol/water mixtures. Then, additional liquids are measured for further verification. The estimated permittivities and conductivities show good agreement with the actual values, with the average error of 4.0% and 8.9%, respectively, indicating the efficacy of WiEps. By measuring the dielectric property, this technique is promising to be applied to new IoT applications using ubiquitous WiFi signals, such as food engineering, material manufacturing process monitoring, and security check.

Keywords: dielectric property; wifi signals; wifi; ethanol water

Journal Title: IEEE Internet of Things Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.