LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A GNN based Supervised Learning Framework for Resource Allocation in Wireless IoT Networks

Photo from wikipedia

The Internet of Things (IoT) allows physical devices to be connected over the wireless networks. Although device-to-device (D2D) communication has emerged as a promising technology for IoT, the conventional solutions… Click to show full abstract

The Internet of Things (IoT) allows physical devices to be connected over the wireless networks. Although device-to-device (D2D) communication has emerged as a promising technology for IoT, the conventional solutions for D2D resource allocation are usually computationally complex and time-consuming. The high complexity poses a significant challenge to the practical implementation of wireless IoT networks. A graph neural network (GNN) based framework is proposed to address this challenge in a supervised manner. Specifically, the wireless network is modeled as a directed graph, where the desirable communication links are modeled as nodes and the harmful interference links are modeled as edges. The effectiveness of the proposed framework is verified via two case studies, namely the link scheduling in D2D networks and the joint channel and power allocation in D2D underlaid cellular networks. Simulation results demonstrate that the proposed framework outperforms the benchmark schemes in terms of the average sum rate and the sample efficiency. In addition, the proposed GNN approach shows potential generalizability to different system settings and robustness to the corrupted input features. It also accelerates the D2D resource optimization by reducing the execution time to only a few milliseconds.

Keywords: wireless iot; iot; resource allocation; framework; iot networks

Journal Title: IEEE Internet of Things Journal
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.