LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy Efficiency and Delay Tradeoff in an MEC-Enabled Mobile IoT Network

Photo by mbrunacr from unsplash

Mobile-edge computing (MEC) has recently emerged as a promising technology in the 5G era. It is deemed an effective paradigm to support computation intensive and delay-critical applications even at energy-constrained… Click to show full abstract

Mobile-edge computing (MEC) has recently emerged as a promising technology in the 5G era. It is deemed an effective paradigm to support computation intensive and delay-critical applications even at energy-constrained and computation-limited Internet of Things (IoT) devices. To effectively exploit the performance benefits enabled by MEC, it is imperative to jointly allocate radio and computational resources by considering nonstationary computation demands, user mobility, and wireless fading channels. This article aims to study the tradeoff between energy efficiency (EE) and service delay for multiuser multiserver MEC-enabled IoT systems when provisioning offloading services in a user mobility scenario. Particularly, we formulate a stochastic optimization problem with the objective of minimizing the long-term average network EE with the constraints of the task queue stability, peak transmit power, maximum CPU-cycle frequency, and maximum user number. To tackle the problem, we propose an online offloading and resource allocation algorithm by transforming the original problem into several individual subproblems in each time slot based on the Lyapunov optimization theory, which are then solved by convex decomposition and submodular methods. Theoretical analysis proves that the proposed algorithm can achieve a $[O(1/V), O(V)]$ tradeoff between EE and service delay. Simulation results verify the theoretical analysis and demonstrate our proposed algorithm can offer much better EE-delay performance in task offloading challenges, compared to several baselines.

Keywords: energy; tradeoff; energy efficiency; mec; delay; mec enabled

Journal Title: IEEE Internet of Things Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.