LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Toward Tailored Models on Private AIoT Devices: Federated Direct Neural Architecture Search

Photo by joakimnadell from unsplash

Neural networks often encounter various stringent resource constraints while deploying on edge devices. To tackle these problems with less human efforts, automated machine learning becomes popular in finding various neural… Click to show full abstract

Neural networks often encounter various stringent resource constraints while deploying on edge devices. To tackle these problems with less human efforts, automated machine learning becomes popular in finding various neural architectures that fit diverse Artificial Intelligence of Things (AIoT) scenarios. Recently, to prevent the leakage of private information while enable automated machine intelligence, there is an emerging trend to integrate federated learning and neural architecture search (NAS). Although promising as it may seem, the coupling of difficulties from both tenets makes the algorithm development quite challenging. In particular, how to efficiently search the optimal neural architecture directly from massive nonindependent and identically distributed (non-IID) data among AIoT devices in a federated manner is a hard nut to crack. In this article, to tackle this challenge, by leveraging the advances in ProxylessNAS, we propose a federated direct neural architecture search (FDNAS) framework that allows for hardware-friendly NAS from non-IID data across devices. To further adapt to both various data distributions and different type of devices with heterogeneous embedded hardware platforms, inspired by meta-learning, a cluster federated direct neural architecture search (CFDNAS) framework is proposed to achieve device-aware NAS, in the sense that each device can learn a tailored deep learning model for its particular data distribution and hardware constraint. Extensive experiments on non-IID data sets have shown the state-of-the-art accuracy–efficiency tradeoffs achieved by the proposed solution in the presence of both data and device heterogeneity.

Keywords: direct neural; architecture; neural architecture; architecture search; federated direct

Journal Title: IEEE Internet of Things Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.