LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Achieve Load Balancing in Multi-UAV Edge Computing IoT Networks: A Dynamic Entry and Exit Mechanism

Photo from wikipedia

With the gradual commercialization of 5G, especially the widespread application of artificial intelligence (AI) technology, the Internet of Things (IoT) continues to expand and has integrated into every aspect of… Click to show full abstract

With the gradual commercialization of 5G, especially the widespread application of artificial intelligence (AI) technology, the Internet of Things (IoT) continues to expand and has integrated into every aspect of our lives. While enjoying the convenience brought by IoT, we also face unprecedented challenges, including ubiquitous and unpredictable demands for communication and computing resources. In consideration of their flexible deployment, low cost, and easy expansion, UAV edge computing IoT networks (UECINs), which adopt unmanned aerial vehicles (UAVs) to provide fast communication and computing services, have emerged as a promising solution. Note that there have been a number of studies focusing on UAV’s position deployment and trajectory design, resource allocation in UECIN. However, most existing works proposed short-term service provisioning systems with a fixed number of UAVs, ignoring the problem of UAVs’ limited battery power and the possible changes of ground users’ number, locations, and resource requirements. To address these issues, we present a dynamic UECIN framework with autonomous prediction characteristics, aiming to stably provide mobile-edge computing services for ground users in a certain area over a long period of time. This framework can not only support UAV’s dynamic entry and exit according to the real-time needs of ground users but also update their position deployment based on the distribution of ground users. As we know, we are the first to propose UECIN with a dynamic entry and exit mechanism. Besides, an efficient and load-balancing task allocation scheme is further given, and extensive analysis and numerical results corroborate the feasibility and superior performance of our framework.

Keywords: entry exit; edge computing; dynamic entry

Journal Title: IEEE Internet of Things Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.