LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental Benchmarking of Next-Gen Indoor Positioning Technologies (Unmodulated) Visible Light Positioning and Ultra-Wideband

Photo by ale_s_bianchi from unsplash

Within the context of the Internet of Things (IoT), many applications require high-quality positioning services. As opposed to traditional technologies, the two most recent positioning solutions: 1) ultra-wideband (UWB) and… Click to show full abstract

Within the context of the Internet of Things (IoT), many applications require high-quality positioning services. As opposed to traditional technologies, the two most recent positioning solutions: 1) ultra-wideband (UWB) and 2) (unmodulated) visible light positioning [(u)VLP] are well suited to economically supply centimeter-to-decimeter level accuracy. This manuscript benchmarks the 2-D positioning performance of an 8-anchor asymmetric double-sided two-way ranging (aSDS-TWR) UWB system and a 15-LED frequency-division multiple access (FDMA) received signal strength (RSS) (u)VLP system in terms of feasibility and accuracy. With extensive experimental data, collected at two heights in a 8 m by 6 m open zone equipped with a precise ground-truth system, it is demonstrated that both visible light positioning (VLP) and UWB already attain median and 90th percentile positioning errors in the order of 5 and 10 cm in line-of-sight (LOS) conditions. An approximately 20-cm median accuracy can be obtained with uVLP, whose main benefit is it being infrastructureless and thus very inexpensive. The accuracy degradation effects of non-LOS (NLOS) on UWB/(u)VLP are highlighted with four scenarios, each consisting of a different configuration of metallic closets. For the considered setup, in 2-D and with minimal tilt of the object to be tracked, VLP outscores UWB in NLOS conditions, while for LOS scenarios similar results are obtained.

Keywords: unmodulated visible; accuracy; light positioning; ultra wideband; experimental benchmarking; visible light

Journal Title: IEEE Internet of Things Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.