LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolved PoW: Integrating the Matrix Computation in Machine Learning Into Blockchain Mining

Photo from wikipedia

Machine learning is an essential technology providing ubiquitous intelligence in Internet of Things (IoT). However, the model training in machine learning demands tremendous computing resource, bringing heavy burden to the… Click to show full abstract

Machine learning is an essential technology providing ubiquitous intelligence in Internet of Things (IoT). However, the model training in machine learning demands tremendous computing resource, bringing heavy burden to the IoT devices. Meanwhile, in the Proof-of-Work (PoW)-based blockchains, miners have to devote large amount of computing resource to compete for generating valid blocks, which is frequently disputed for tremendous computing resource waste. To address this dilemma, we propose an Evolved-PoW (E-PoW) consensus that can integrate the matrix computations in machine learning into the process of blockchain mining. The integrated architecture, the elaborated schemes of transferring matrix computations from machine learning to blockchain mining, and the reward adjustment scheme to affect the activity of the miners are, respectively, designed for E-PoW in detail. E-PoW can keep the advantages of PoW in blockchain and simultaneously salvage the computing power of the miners for the model training in machine learning. We conduct experiments to verify the availability and effect of E-PoW. The experimental results show that E-PoW can salvage by up to 80% computing power from pure blockchain mining for parallel model training in machine learning.

Keywords: machine; pow; machine learning; blockchain mining

Journal Title: IEEE Internet of Things Journal
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.