LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Characterization of Wrist Motions and Bionic Energy Harvesting for Wrist Wearables

Wrist-worn smart wearable devices, such as smartwatches and wristbands, are showing a high growth trajectory for decades in the wearable technology market. However, most wrist-worn generators are confined into watch… Click to show full abstract

Wrist-worn smart wearable devices, such as smartwatches and wristbands, are showing a high growth trajectory for decades in the wearable technology market. However, most wrist-worn generators are confined into watch bodies, which undermines the functionality of the wearables. In this study, we first characterize the dynamic properties of wrist motions and propose four rules for the design of wrist-worn energy harvesters. Based on the design rules, we then present a bionic piezoelectric energy harvester, composed of an inner band, an outer band with a piezoelectric array, and a watch body. The two-layer band structure mimics two branches of a Y-shaped hyoid bone of the woodpecker’s head. A finite element model is built to study the mechanical and electrical responses of the design. The model is validated by an experiment and is utilized to find the optimal thickness and positions of piezoelectric elements. Based on the optimizations, we fabricate a prototype with a piezoelectric array as the energy harvesting unit. With an ac–dc rectifier, the prototype is tested to characterize the electrical responses in four wrist motions. The result shows that the average power output of a bionic harvester is 2.10 mW in shaking arm motion, higher than previously reported wrist-worn generators. Finally, we demonstrate that the prototype enables to sustainably power a screen of a smartwatch, a wireless temperature monitoring system, and a commercial electronic thermohygrometer, respectively.

Keywords: wrist worn; energy harvesting; characterization wrist; motions bionic; wrist motions; energy

Journal Title: IEEE Internet of Things Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.