LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Few-Shot Specific Emitter Identification via Deep Metric Ensemble Learning

Photo by osheen_ from unsplash

Specific emitter identification (SEI) is a highly potential technology for physical-layer authentication that is one of the most critical supplements for the upper-layer authentication. SEI is based on radio frequency… Click to show full abstract

Specific emitter identification (SEI) is a highly potential technology for physical-layer authentication that is one of the most critical supplements for the upper-layer authentication. SEI is based on radio frequency (RF) features from circuit difference, rather than cryptography. These features are inherent characteristics of hardware circuits, which are difficult to counterfeit. Recently, various deep learning (DL)-based conventional SEI methods have been proposed, and achieved advanced performances. However, these methods are proposed for close-set scenarios with massive RF signal samples for training, and they generally have poor performance under the condition of limited training samples. Thus, we focus on few-shot SEI (FS-SEI) for aircraft identification via automatic dependent surveillance-broadcast (ADS-B) signals, and a novel FS-SEI method is proposed, based on deep metric ensemble learning (DMEL). Specifically, the proposed method consists of feature embedding and classification. The former is based on metric learning with a complex-valued convolutional neural network (CVCNN) for extracting discriminative features with compact intracategory distance and separable intercategory distance, while the latter is realized by an ensemble classifier. Simulation results show that if the number of samples per category is more than 5, the average accuracy of our proposed method is higher than 98%. Moreover, feature visualization demonstrates the advantages of our proposed method in both discriminability and generalization. The code and the dataset can be downloaded from https://github.com/BeechburgPieStar/FS-SEI.

Keywords: identification; emitter identification; identification via; specific emitter; sei; deep metric

Journal Title: IEEE Internet of Things Journal
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.