LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Solution to the Non-Ideal Delay Line Problem in Transmitted Reference Pulse Cluster Schemes for UWB Communications

Photo by edhoradic from unsplash

The conventional transmitted reference (TR) technique in ultra wide-band (UWB) communications has provided a springboard for a lot of studies, and a TR pulse cluster (TRPC) structure was proved to… Click to show full abstract

The conventional transmitted reference (TR) technique in ultra wide-band (UWB) communications has provided a springboard for a lot of studies, and a TR pulse cluster (TRPC) structure was proved to have robust performance. Most of TR and TRPC related studies hitherto are based on the assumption that the delay lines (DLs) in their schemes are ideal. However, the group delay ripple (GDR) of nonideal DLs triggered by practical imperfect factors at implementation causes an unexpected distortion in both TR and TRPC UWB systems, and there are few studies so far. In this article, we first analyze the impact of the GDR of nonideal DLs on the performance of TR and TRPC UWB systems. Then a new design solution for both TR and TRPC transceivers is proposed, where the GDR information of the nonideal DL at the receiver side is introduced into transmitter side. The performance of the new design solution is analyzed and simulation results prove the robustness and efficiency of this new design method in reducing the impaction caused by nonideal DLs. Moreover, the proposed design solution can also greatly relieve the high design requirement of DLs in both the transmitter and receiver side and therefore offer valuable insight for the practical transceiver design in both TR and TRPC related UWB systems.

Keywords: trpc; transmitted reference; design; uwb communications; solution; delay

Journal Title: IEEE Internet of Things Journal
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.