LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid Motion Model for Multiple Object Tracking in Mobile Devices

Photo from wikipedia

For an intelligent transportation system, multiple object tracking (MOT) is more challenging from the traditional static surveillance camera to mobile devices of the Internet of Things (IoT). To cope with… Click to show full abstract

For an intelligent transportation system, multiple object tracking (MOT) is more challenging from the traditional static surveillance camera to mobile devices of the Internet of Things (IoT). To cope with this problem, previous works always rely on additional information from multivision, various sensors, or precalibration. Only based on a monocular camera, we propose a hybrid motion model to improve the tracking accuracy in mobile devices. First, the model evaluates camera motion hypotheses by measuring optical flow similarity and transition smoothness to perform robust camera trajectory estimation. Second, along the camera trajectory, smooth dynamic projection is used to map objects from image to world coordinate. Third, to deal with trajectory motion inconsistency, which is caused by occlusion and interaction of long time interval, tracklet motion is described by the multimode motion filter for adaptive modeling. Fourth, in tracklets association, we propose a spatiotemporal evaluation mechanism, which achieves higher discriminability in motion measurement. Experiments on MOT15, MOT17, and KITTI benchmarks show that our proposed method improves the trajectory accuracy, especially in mobile devices and our method achieves competitive results over other state-of-the-art methods.

Keywords: object tracking; multiple object; motion; hybrid motion; mobile devices; model

Journal Title: IEEE Internet of Things Journal
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.