LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrahigh Throughput Indoor Infrared Wireless Communication System Enabled by a Cascaded Aperture Optical Receiver Fabricated on InP Membrane

Photo by chrismoore_ from unsplash

Due to eye safety regulations, the allowable transmitted power in an optical wireless communication system is limited. Maximization of the optical power collected at the receiver is required in order… Click to show full abstract

Due to eye safety regulations, the allowable transmitted power in an optical wireless communication system is limited. Maximization of the optical power collected at the receiver is required in order to achieve the link power budget needed for maximum-speed data transfer. A large optical aperture at the receiver yields efficient power collection. Large-area top-illuminated photodiodes can on the one hand collect much light, but on the other hand inherently have a large capacitance and, thus, a reduced electrical bandwidth. To completely break this optical-electrical tradeoff, we propose a new class of optical receivers, i.e., cascaded aperture optical receivers. Such an optical receiver decouples the light collection function from the light detection one by using two separate apertures: the first function is done by surface grating coupler(s) feeding the received light into a waveguide, and the second one by an ultrahigh speed waveguide-coupled photodiode. These two apertures can be engineered independently to optimize the overall optical and electrical properties of the receiver. Empowered by an integrated cascaded aperture optical receiver fabricated on our InP membrane platform, we successfully demonstrated an indoor optical wireless communication system with a 200 Gb/s (5λ × 40 Gb/s) capacity.

Keywords: cascaded aperture; aperture optical; receiver; wireless communication; communication system; optical receiver

Journal Title: Journal of Lightwave Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.