LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Modeling of in-Band Pumped Ho-Doped Silica Fiber Lasers

Photo from wikipedia

A theoretical model to describe in-band pumped holmium doped silica fiber lasers is presented. The model is established based upon theory and parameters obtained from published research works. Both core-pumped… Click to show full abstract

A theoretical model to describe in-band pumped holmium doped silica fiber lasers is presented. The model is established based upon theory and parameters obtained from published research works. Both core-pumped system and cladding-pumped system are simulated with the model. The simulation results agree well with most experimental results, and for the cases in which the simulation results show discrepancy with the experimental results the disagreement can be reasonably explained. Through numerical analysis it is found that besides common negative factors such as non-radiative decay, fiber loss, and non-optimized resonator configuration, energy transfer upconversion plays a deleterious role in the performance of in-band pumped holmium doped silica fiber lasers. In particular, inhomogeneous upconversion associated with ion clustering is found to cause significant degradation of slope efficiencies of lasers, a fact that is useful to understand the unsolved problem regarding the lower-than-expected slope efficiencies observed in previous studies of in-band pumped holmium doped fiber lasers.

Keywords: silica fiber; band pumped; fiber lasers; doped silica

Journal Title: Journal of Lightwave Technology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.