Linear threaded algebraic space-time (TAST) codes have shown potential advantage in mitigating the mode-dependent loss in the few-mode-fiber-based mode-division multiplexing (MDM) system. However, the maximum-likelihood (ML) detector employed at the… Click to show full abstract
Linear threaded algebraic space-time (TAST) codes have shown potential advantage in mitigating the mode-dependent loss in the few-mode-fiber-based mode-division multiplexing (MDM) system. However, the maximum-likelihood (ML) detector employed at the receiver of the MDM system greatly suffers from exponential computational complexity. In this work, we first examine the necessity of space-time coding in the MDM system. On this basis, a new hybrid detection, which integrates the improved reduced-search (IRS) method and the decision feedback equalizer (DFE), is proposed for the TAST-assisted MDM system, in which DFE is employed to detect the more reliable tributaries to obtain a near-ML solution, while IRS is responsible for finding the best solution in the remaining set with a reduced number of candidates. Simulation results show that the proposed detection method can achieve near-optimal solutions and has a low computational complexity. Moreover, it has the attractive advantage of flexible adjustment in the tradeoff between system performance and computational complexity.
               
Click one of the above tabs to view related content.