LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multi-Layer Service Provisioning Over Resilient Software-Defined Partially Disaggregated Networks

Photo by thisisengineering from unsplash

The need of introducing interoperability in the transport network segment has motivated the emergence of several open initiatives and standardization efforts for the development of different interfaces to allow Software… Click to show full abstract

The need of introducing interoperability in the transport network segment has motivated the emergence of several open initiatives and standardization efforts for the development of different interfaces to allow Software Defined Network (SDN) controllers manage and control the network devices. Optical disaggregation in particular aims the introduction of standard device-level interfaces in the optical terminals and line-systems to ‘open’ them from vendor lock-in situations, allowing an interoperable ecosystem in the optical network's transport segment. In this article, it is firstly presented the Software Defined Transport Network (SDTN) architecture, as the control and management framework to build a L0-L3 multi-layer, multi-technology transport network, enabling end-to-end network service delivery. Later, we introduce the partially disaggregated network architecture proposed, including the technical assessment of the topology discovery and resilience service provisioning use cases, by providing a low-level description of the information models employed and the translation between models. To conclude, a proof-of-concept of multi-layer service provisioning over resilient disaggregated multi-vendor testbed is presented, including the results obtained in the experimental demonstration presented in last 2019 Optical Fiber Conference (OFC).

Keywords: multi layer; software defined; service provisioning; service; network

Journal Title: Journal of Lightwave Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.