LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical Free-Form Couplers for High-density Integrated Photonics (OFFCHIP): A Universal Optical Interface

Photo by martindorsch from unsplash

Coupling of light between different photonic devices, for example on-chip waveguides, fibers, and free-space optical elements, is an essential function enabling integrated optical systems. Efficient optical coupling demands matching the… Click to show full abstract

Coupling of light between different photonic devices, for example on-chip waveguides, fibers, and free-space optical elements, is an essential function enabling integrated optical systems. Efficient optical coupling demands matching the optical mode profiles and effective indices between two devices, and often changing propagation direction of the light. To date, such coupling is pre-dominantly accomplished via direct butt coupling of two devices, or meticulously optimized diffraction gratings. In this article, we present a new coupling scheme based on microfabricated free-form optical reflectors. The free-form reflector simultaneously achieves the functions of light beam re-directing and shaping (for mode matching), and can be versatilely adapted for coupling between photonic chips, fibers, and free-space surface-incident devices. We show that this technology uniquely fulfills all key performance requirements for optical interfaces with exceptionally low coupling loss (0.2–0.3 dB per coupler), large bandwidth (over half an octave), high density (large 2-D coupler arrays), polarization diversity, and superior alignment tolerance commensurate with passive alignment techniques. Preliminary experimental validation demonstrates waveguide-to-fiber coupling with a low insertion loss (IL) of 0.9 dB. We foresee that the technology will become a promising solution to the chip-level photonic interconnection and packaging challenges plaguing integrated photonics.

Keywords: photonics; high density; integrated photonics; free form

Journal Title: Journal of Lightwave Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.