Ripples on the seafloor affect acoustic scattering and transmission loss, wave attenuation, and the amount of sediment transported in shallow water. Historically, seafloor roughness (a function of ripples, bedforms, sediment… Click to show full abstract
Ripples on the seafloor affect acoustic scattering and transmission loss, wave attenuation, and the amount of sediment transported in shallow water. Historically, seafloor roughness (a function of ripples, bedforms, sediment type, and size) is assumed to be spatially homogeneous and temporally static in hydrodynamic and acoustic models despite the often dynamic nature of the seafloor in the nearshore region. We present a spectral ripple model, Navy Seafloor Evolution Archetype (NSEA), which simulates the variations in seafloor roughness given measured or predicted wave conditions in sandy environments. NSEA simulates sand ripple formation and evolution based on bottom velocities either measured or predicted by a wave model. The time dependency is a function of equilibrium ripple geometries and the amount of sediment transport needed to reach an equilibrium state, which is dependent on the relict ripples. Spectral decay due to bioturbation is incorporated as a diffusive process. NSEA was validated with time series observations obtained in water depths of 7.5 and 20 m from April 20, 2013 to May 23, 2013 during the 2013 Target and Reverberation Experiment (TREX13) offshore of Panama City, FL, USA. The model predicted spectral ripple wavelengths that were in good agreement with observed spectral ripple wavelengths obtained using a fixed platform, high-frequency (2.25 MHz) sector scanning sonar. Likewise, the variations in the predicted normalized ripple heights and orientations were similar to the normalized spectral decay and orientations estimated from the sector scanning sonar imagery.
               
Click one of the above tabs to view related content.