LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of Inclined Sidewall Structure With Bottom Metal Air Cavity on the Light Extraction Efficiency for AlGaN-Based Deep Ultraviolet Light-Emitting Diodes

Photo from wikipedia

An inclined sidewall scattering structure with air cavity characterized by a metal bottom and flat parallel top (Bottom_metal) is proposed to enhance the light extraction efficiency (LEE) for AlGaN-based deep… Click to show full abstract

An inclined sidewall scattering structure with air cavity characterized by a metal bottom and flat parallel top (Bottom_metal) is proposed to enhance the light extraction efficiency (LEE) for AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs). Compared to the reported sidewall metal inclined sidewall (Sidewall_metal) structure, the Bottom_metal structure can greatly enhance the LEE of DUV LEDs based on three-dimensional finite difference time domain simulations. Further analysis indicates that the existence of the air cavity promotes the Bottom_metal DUV LEDs to mainly utilize the total internal reflection and the Fresnel scattering to scatter the light into the escape cone, which avoids the light absorption from the sidewall metal mirror in the Sidewall_metal structure. Moreover, the unique air cavity having a bottom metal also enhances the scattering ability of the Bottom_metal DUV LEDs because any light within the cavity directing downward will be reflected back, and the parallel top interface of air cavity/AlGaN functions as additional out-light planes not limited by total internal reflection.

Keywords: metal; bottom metal; air cavity; structure

Journal Title: IEEE Photonics Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.