LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Calculation and Analysis of the Bistatic Quantum Radar Cross Section for the Typical 2-D Plate

Photo from wikipedia

The quantum radar cross section (QRCS) describes how much return one gets when illuminating an object with a handful of photons. However, the previous studies mainly focused on the monostatic… Click to show full abstract

The quantum radar cross section (QRCS) describes how much return one gets when illuminating an object with a handful of photons. However, the previous studies mainly focused on the monostatic scattering of quantum radar. In this study, in response to the four key questions raised by ourselves in bistatic quantum radar cross section (BIQRCS), we calculate and analyze the BIQRCS for the typical tow-dimensional plate. First, as mentioned by Brandsema, the further derived analytical solution for the rectangular plate is obtained. In addition, the influence of incident frequency and the number of photons on the BIQRCS for the plate were obtained. Besides, we first reveal that the envelope curves of sidelobes in BIQRCS at the given incidence display the invariance in frequency. Finally, we show some comparison results among the BIQRCS, classical radar cross section (CRCS), and monostatic QRCS for the plate and find the advantage of sidelobe of the BIQRCS in given direction. We anticipate that these research results will find use in the detection and discrimination of stealthy platforms.

Keywords: quantum radar; radar cross; radar; plate; cross section

Journal Title: IEEE Photonics Journal
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.