Nanomechanical oscillator has attracted considerable attention in mass sensing applications because of its ability to connect mass variation and frequency change on mechanical oscillator. Here, using the exact same parameters… Click to show full abstract
Nanomechanical oscillator has attracted considerable attention in mass sensing applications because of its ability to connect mass variation and frequency change on mechanical oscillator. Here, using the exact same parameters with previous work based on the linearized dynamics of the optomechanical interactions, we show that the frequency shift of optomechanically induced second-order sideband is more sensitive to the mass change of mechanical oscillator. The proposed method may offer an approach to open up a broad application prospect for on-chip optomechanical devices in sensors by virtue of the achievable intrinsic optomechanical nonlinearity in the weak coupling regime under the currently existing experimental technique.
               
Click one of the above tabs to view related content.