LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Enhanced MPPT Method Combining Fractional-Order and Fuzzy Logic Control

Photo by heathermount from unsplash

A fractional-order fuzzy logic control (FOFLC) method for maximum power point tracking (MPPT) in a photovoltaic (PV) system is presented. By combining the robustness of fuzzy logic with the accuracy… Click to show full abstract

A fractional-order fuzzy logic control (FOFLC) method for maximum power point tracking (MPPT) in a photovoltaic (PV) system is presented. By combining the robustness of fuzzy logic with the accuracy of fractional order, the proposed method can improve the tracking accuracy in weather variations compared with the conventional fuzzy MPPT. First, the fractional-order factor is carefully selected according to the dynamic range of the fuzzy controller. It takes a bigger alpha factor in the first place to expand the fuzzy domain and shortens the time of searching for the MPP. When the maximum power point is approached, it uses a smaller the alpha factor to contract the fuzzy domain and eliminates the oscillations at the MPP. Therefore, the FOFLC in a PV system has rapid dynamic responses under environment variations and high tracking accuracy of the maximum power point. Second, MATLAB/Simulink software is employed to simulate a PV power system and verify the proposed algorithm by various simulations. The enhanced MPPT algorithm has been implemented on a field programmable gate array (FPGA) board. Finally, a boost dc–dc converter experiment has been carried out to evaluate the system performance. The simulation and experiment results show that this method can improve the transient and steady-state performance simultaneously.

Keywords: logic control; order; order fuzzy; fractional order; method; fuzzy logic

Journal Title: IEEE Journal of Photovoltaics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.