LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio

Photo from academic.microsoft.com

Small area hybrid organometal halide perovskite based solar cells reached performances comparable to the multicrystalline silicon wafer cells. However, industrial applications require the scaling-up of devices to module-size. Here, we… Click to show full abstract

Small area hybrid organometal halide perovskite based solar cells reached performances comparable to the multicrystalline silicon wafer cells. However, industrial applications require the scaling-up of devices to module-size. Here, we report the first fully laser-processed large area (14.5 cm2) perovskite solar module with an aperture ratio of 95% and a power conversion efficiency of 9.3%. To obtain this result, we carried out thorough analyses and optimization of three laser processing steps required to realize the serial interconnection of various cells. By analyzing the statistics of the fabricated modules, we show that the error committed over the projected interconnection dimensions is sufficiently low to permit even higher aperture ratios without additional efforts.

Keywords: perovskite; perovskite solar; laser patterning; patterning engineering; engineering perovskite; aperture ratio

Journal Title: IEEE Journal of Photovoltaics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.