LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Correlation of Defect Luminescence and Recombination in Multicrystalline Silicon

Photo by viazavier from unsplash

Correlations between defect-related luminescence (DRL) and recombination mechanisms of multicrystalline silicon wafers are investigated by hyperspectral photoluminescence (PL) imaging at cryogenic temperatures (∼80 K) and by PL-based techniques for charge… Click to show full abstract

Correlations between defect-related luminescence (DRL) and recombination mechanisms of multicrystalline silicon wafers are investigated by hyperspectral photoluminescence (PL) imaging at cryogenic temperatures (∼80 K) and by PL-based techniques for charge carrier lifetime at room temperature. This unique combination of measurement techniques is used to spectrally compare the DRL in n-type and p-type wafers and to investigate the DRL as a function of block height in a p-type block. Further, the dependence of DRL on interstitial and precipitated metallic impurities has been investigated by comparison of simulated concentration profiles of interstitial and precipitated iron with the spatial distribution of DRL. Our results indicate that the origins of the dislocation-related emission lines (D-lines) are independent of the doping type and suggest that the spectral shape, rather, is determined by the dominating recombination mechanism in the material. In regions with high structural defect density, we observe increased intensities of the D-lines D1–D4 in the DRL spectrum. In regions with a high concentration of either iron or other metallic precipitates, we observe reduced emission intensities of D3 and D4. It is, thus, likely that precipitates of either iron or other impurities partly supress the D3 and D4 emission intensities.

Keywords: drl; multicrystalline silicon; recombination; luminescence

Journal Title: IEEE Journal of Photovoltaics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.