The constantly increasing number of disclosed security vulnerabilities have become an important concern in the software industry and in the field of cybersecurity, suggesting that the current approaches for vulnerability… Click to show full abstract
The constantly increasing number of disclosed security vulnerabilities have become an important concern in the software industry and in the field of cybersecurity, suggesting that the current approaches for vulnerability detection demand further improvement. The booming of the open-source software community has made vast amounts of software code available, which allows machine learning and data mining techniques to exploit abundant patterns within software code. Particularly, the recent breakthrough application of deep learning to speech recognition and machine translation has demonstrated the great potential of neural models’ capability of understanding natural languages. This has motivated researchers in the software engineering and cybersecurity communities to apply deep learning for learning and understanding vulnerable code patterns and semantics indicative of the characteristics of vulnerable code. In this survey, we review the current literature adopting deep-learning-/neural-network-based approaches for detecting software vulnerabilities, aiming at investigating how the state-of-the-art research leverages neural techniques for learning and understanding code semantics to facilitate vulnerability discovery. We also identify the challenges in this new field and share our views of potential research directions.
               
Click one of the above tabs to view related content.