LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Tutorial on Ultrareliable and Low-Latency Communications in 6G: Integrating Domain Knowledge Into Deep Learning

Photo by hajjidirir from unsplash

As one of the key communication scenarios in the fifth-generation and also the sixth-generation (6G) mobile communication networks, ultrareliable and low-latency communications (URLLCs) will be central for the development of… Click to show full abstract

As one of the key communication scenarios in the fifth-generation and also the sixth-generation (6G) mobile communication networks, ultrareliable and low-latency communications (URLLCs) will be central for the development of various emerging mission-critical applications. State-of-the-art mobile communication systems do not fulfill the end-to-end delay and overall reliability requirements of URLLCs. In particular, a holistic framework that takes into account latency, reliability, availability, scalability, and decision-making under uncertainty is lacking. Driven by recent breakthroughs in deep neural networks, deep learning algorithms have been considered as promising ways of developing enabling technologies for URLLCs in future 6G networks. This tutorial illustrates how domain knowledge (models, analytical tools, and optimization frameworks) of communications and networking can be integrated into different kinds of deep learning algorithms for URLLCs. We first provide some background of URLLCs and review promising network architectures and deep learning frameworks for 6G. To better illustrate how to improve learning algorithms with domain knowledge, we revisit model-based analytical tools and cross-layer optimization frameworks for URLLCs. Following this, we examine the potential of applying supervised/unsupervised deep learning and deep reinforcement learning in URLLCs and summarize related open problems. Finally, we provide simulation and experimental results to validate the effectiveness of different learning algorithms and discuss future directions.

Keywords: ultrareliable low; domain knowledge; deep learning; low latency

Journal Title: Proceedings of the IEEE
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.