LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hybrid Analog and Digital Beamforming for mmWave OFDM Large-Scale Antenna Arrays

Photo by markusspiske from unsplash

Hybrid analog and digital beamforming is a promising candidate for large-scale millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems because of its ability to significantly reduce the hardware complexity of the… Click to show full abstract

Hybrid analog and digital beamforming is a promising candidate for large-scale millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems because of its ability to significantly reduce the hardware complexity of the conventional fully digital beamforming schemes while being capable of approaching the performance of fully digital schemes. Most of the prior work on hybrid beamforming considers frequency-flat channels. However, broadband mmWave systems are frequency-selective. In broadband systems, it is desirable to design common analog beamformer for the entire band while employing different digital (baseband) beamformers in different frequency sub-bands. This paper considers the hybrid beamforming design for systems with orthogonal frequency division multiplexing modulation. First, for a single-user MIMO (SU-MIMO) system where the hybrid beamforming architecture is employed at both transmitter and receiver, we show that hybrid beamforming with a small number of radio frequency (RF) chains can asymptotically approach the performance of fully digital beamforming for a sufficiently large number of transceiver antennas due to the sparse nature of the mmWave channels. For systems with a practical number of antennas, we then propose a unified heuristic design for two different hybrid beamforming structures, the fully connected and the partially connected structures, to maximize the overall spectral efficiency of an mmWave MIMO system. Numerical results are provided to show that the proposed algorithm outperforms the existing hybrid beamforming methods, and for the fully connected architecture, the proposed algorithm can achieve spectral efficiency very close to that of the optimal fully digital beamforming but with much fewer RF chains. Second, for the multiuser multiple-input single-output case, we propose a heuristic hybrid percoding design to maximize the weighted sum rate in the downlink and show numerically that the proposed algorithm with practical number of RF chains can already approach the performance of fully digital beamforming.

Keywords: beamforming; hybrid beamforming; digital beamforming; analog digital; fully digital; hybrid analog

Journal Title: IEEE Journal on Selected Areas in Communications
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.