In this paper, we investigate over-the-air model aggregation in a federated edge learning (FEEL) system. We introduce a Markovian probability model to characterize the intrinsic temporal structure of the model… Click to show full abstract
In this paper, we investigate over-the-air model aggregation in a federated edge learning (FEEL) system. We introduce a Markovian probability model to characterize the intrinsic temporal structure of the model aggregation series. With this temporal probability model, we formulate the model aggregation problem as to infer the desired aggregated update given all the past observations from a Bayesian perspective. We develop a message passing based algorithm, termed temporal-structure-assisted gradient aggregation (TSA-GA), to fulfil this estimation task with low complexity and near-optimal performance. We further establish the state evolution (SE) analysis to characterize the behaviour of the proposed TSA-GA algorithm, and derive an explicit bound of the expected loss reduction of the FEEL system under certain standard regularity conditions. In addition, we develop an expectation maximization (EM) strategy to learn the unknown parameters in the Markovian model. We show that the proposed TSA-GA significantly outperforms the state-of-the-art analog compression scheme, and is able to achieve comparable learning performance as the error-free benchmark in terms of final test accuracy.
               
Click one of the above tabs to view related content.