LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Blind Equalization and Channel Estimation in Coherent Optical Communications Using Variational Autoencoders

Photo by hannahrdg from unsplash

We investigate the potential of adaptive blind equalizers based on variational inference for carrier recovery in optical communications. These equalizers are based on a low-complexity approximation of maximum likelihood channel… Click to show full abstract

We investigate the potential of adaptive blind equalizers based on variational inference for carrier recovery in optical communications. These equalizers are based on a low-complexity approximation of maximum likelihood channel estimation. We generalize the concept of variational autoencoder (VAE) equalizers to higher order modulation formats encompassing probabilistic constellation shaping (PCS), ubiquitous in optical communications, oversampling at the receiver, and dual-polarization transmission. Besides black-box equalizers based on convolutional neural networks, we propose a model-based equalizer based on a linear butterfly filter and train the filter coefficients using the variational inference paradigm. As a byproduct, the VAE also provides a reliable channel estimation. We analyze the VAE in terms of performance and flexibility over a classical additive white Gaussian noise (AWGN) channel with inter-symbol interference (ISI) and over a dispersive linear optical dual-polarization channel. We show that it can extend the application range of blind adaptive equalizers by outperforming the state-of-the-art constant-modulus algorithm (CMA) for PCS for both fixed but also time-varying channels. The evaluation is accompanied with a hyperparameter analysis.

Keywords: channel; equalizers based; channel estimation; optical communications; using variational

Journal Title: IEEE Journal on Selected Areas in Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.