LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Joint Design of Power Allocation, Beamforming, and Positioning for Energy-Efficient UAV-Aided Multiuser Millimeter-Wave Systems

Photo by edhoradic from unsplash

In this paper, the joint design of power allocation (PA), beamforming (BF) and positioning is studied for unmanned-aerial-vehicle (UAV) aided millimeter-Wave (UAV-mmWave) systems, with the objective of maximizing the energy… Click to show full abstract

In this paper, the joint design of power allocation (PA), beamforming (BF) and positioning is studied for unmanned-aerial-vehicle (UAV) aided millimeter-Wave (UAV-mmWave) systems, with the objective of maximizing the energy efficiency (EE), under the constraints of maximum transmitting power, minimum data rate from the ground users and positioning range of the UAV. To address the above problem, we first obtain the positioning of the UAV, with the help of approximate beam pattern. Then, near-optimal BF and closed-form PA are derived given the obtained position, with the help of block coordinate descent method. To reduce the complexity, two suboptimal BF schemes with one-loop iteration and closed-form solutions are respectively derived. Furthermore, we propose the simplified algorithms for two special cases, i.e., only line-of-sight (LoS) path and Non-LoS (NLoS) path exist between the users and the UAV. Simulation results verify the effectiveness of the developed joint schemes and show the superior EE performance. Moreover, they can obtain almost the same performance as the existing benchmark schemes but with lower complexity.

Keywords: power; beamforming positioning; design power; allocation beamforming; power allocation; joint design

Journal Title: IEEE Journal on Selected Areas in Communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.