LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microphone-Array Ego-Noise Reduction Algorithms for Auditory Micro Aerial Vehicles

Photo from wikipedia

When a micro aerial vehicle (MAV) captures sounds emitted by a ground or aerial source, its motors and propellers are much closer to the microphone(s) than the sound source, thus… Click to show full abstract

When a micro aerial vehicle (MAV) captures sounds emitted by a ground or aerial source, its motors and propellers are much closer to the microphone(s) than the sound source, thus leading to extremely low signal-to-noise ratios (SNR), e.g., −15 dB. While microphone-array techniques have been investigated intensively, their application to MAV-based ego-noise reduction has been rarely reported in the literature. To fill this gap, we implement and compare three types of microphone-array algorithms to enhance the target sound captured by an MAV. These algorithms include a recently emerged technique, time-frequency spatial filtering, and two well-known techniques, beamforming and blind source separation. In particular, based on the observation that the target sound and the ego-noise usually have concentrated energy at sparsely isolated time-frequency bins, we propose to use the time-frequency processing approach, which formulates a spatial filter that can enhance a target direction based on local direction of arrival estimates at individual time-frequency bins. By exploiting the time-frequency sparsity of the acoustic signal, this spatial filter works robustly for sound enhancement in the presence of strong ego-noise. We analyze in details the three techniques and conduct a comparative evaluation with real-recorded MAV sounds. Experimental results show the superiority of blind source separation and time-frequency filtering in low-SNR scenarios.

Keywords: ego noise; microphone array; noise; time frequency

Journal Title: IEEE Sensors Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.