LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DOA and Gain-Phase Errors Estimation for Noncircular Sources With Central Symmetric Array

Photo by valentinantonini from unsplash

The problem of direction-of-arrival (DOA) estimation for noncircular sources impinging on a central symmetric array (CSA) in the presence of sensor gain-phase uncertainties is addressed in this paper. A noniterative… Click to show full abstract

The problem of direction-of-arrival (DOA) estimation for noncircular sources impinging on a central symmetric array (CSA) in the presence of sensor gain-phase uncertainties is addressed in this paper. A noniterative method is proposed and the corresponding stochastic Cramér–Rao bound is derived. The proposed method is realized through two steps. First, an eigenstructure-based technique is presented to estimate the spatial signatures. Second, the DOAs are obtained by adopting an element-wise division approach to the estimated spatial signatures, based on which, the sensor gain-phase errors are given in closed-form. The ambiguity of DOA estimation is analyzed as well. The proposed method offers a number of advantages in comparison with the existing methods that apply to CSA. First, the DOA estimator is independent of the sensor phases. Second, the proposed method applies to incoherent sources. Third, the proposed method is capable of providing 360° azimuthal coverage under certain conditions. Fourth, an additional performance gain is achieved by taking the property of noncircular sources into consideration. Numerical simulations are provided to verify the effectiveness of the proposed method.

Keywords: doa; proposed method; noncircular sources; gain phase

Journal Title: IEEE Sensors Journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.