LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Re-Entrant Cavity Accelerometer With High Bias Stability

Photo by martindorsch from unsplash

Accelerometers with high resolution and high bias stability are required for tracking and navigation in various tactical applications. This paper presents the design and experimental validation of an inertial grade… Click to show full abstract

Accelerometers with high resolution and high bias stability are required for tracking and navigation in various tactical applications. This paper presents the design and experimental validation of an inertial grade microwave re-entrant cavity-based accelerometer with RF readout. A model for the sensitivity of a re-entrant cavity is developed, and its design parameters are optimized to achieve a high scale factor. The RF readout of the sensor uses a cavity-stabilized oscillator (CSO), which is frequency locked to the cavity, to obtain a low close-in phase noise output. This method of locking the oscillator to the cavity is relatively simple and does not require any modulation techniques, as reported in previous works. A mathematical model of flicker noise power spectral density of the CSO is developed to design the CSO components for an accelerometer resolution of $1~\mu \text{g}$ . A scale factor of 1.25 MHz/g and bias stability of 1 ng were achieved for the fabricated sensor with a measurement range of ±1 g even without using active temperature control. This is one of the best scale factors, and bias stability reported to date in a similar accelerometer fabricated using conventional machining. The proposed design can be used for compact, low-cost inertial grade accelerometers.

Keywords: high bias; entrant cavity; bias stability; cavity

Journal Title: IEEE Sensors Journal
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.