Channel memory and inter-symbol interference (ISI) are harmful factors in diffusion-based molecular communication (DBMC) between bionanosensors. To tackle these problems, this paper proposes a lightweight ISI-mitigating coding scheme to improve… Click to show full abstract
Channel memory and inter-symbol interference (ISI) are harmful factors in diffusion-based molecular communication (DBMC) between bionanosensors. To tackle these problems, this paper proposes a lightweight ISI-mitigating coding scheme to improve the system performance by shaping the signal using a constrained code. To characterize the proposed coding scheme theoretically, we derive analytical expressions for the bit error rate (BER) and the achievable rate based on Central Limit Theorem. Computer simulations are conducted to verify the accuracy of the theoretical results and demonstrate the superiority of the proposed coding scheme compared with the existing coding schemes.
               
Click one of the above tabs to view related content.