LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 56-Gb/s PAM4 Wireline Transceiver Using a 32-Way Time-Interleaved SAR ADC in 16-nm FinFET

Photo from academic.microsoft.com

A 56-Gb/s PAM4 wireline transceiver testchip is implemented in 16-nm FinFET. The current mode logic transmitter incorporates an auxiliary current injection at the output nodes to maintain PAM4 amplitude linearity.… Click to show full abstract

A 56-Gb/s PAM4 wireline transceiver testchip is implemented in 16-nm FinFET. The current mode logic transmitter incorporates an auxiliary current injection at the output nodes to maintain PAM4 amplitude linearity. The ADC-based receiver incorporates hybrid analog and digital equalizations. The analog equalization is performed using two identical stages of continuous time linear equalizer, each having a constant of ~0-dB dc-gain and a maximum peaking of ~7 dB peaking at 14 GHz. A 28-GSample/s 32-way time-interleaved SAR ADC converts the equalized analog signal into digital domain for further equalization using digital signal processing. The transceiver achieves <1e-8 bit error rate over a backplane channel with 31-dB loss at 14-GHz and 3.5-mVrms additional crosstalk, using a fixed ~10-dB TX equalization and an adaptive hybrid RX equalization, with the DSP configured to have a 24-tap feed forward equalizer and a 1-tap decision feedback equalizer. The transceiver consumes 550-mW power at 56 Gb/s, excluding the power of the on-chip configurable DSP that cannot be accurately measured as it is implemented as part of a larger test structure.

Keywords: adc; pam4 wireline; time; time interleaved; way time; wireline transceiver

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.