LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Wideband Fully Integrated Software-Defined Transceiver for FDD and TDD Operation

Photo from academic.microsoft.com

Although there is much active research on software-defined radios (SDRs) with receive (RX) or transmit (TX) functionality, little work has been done on SDR transceivers supporting frequency division duplex (FDD).… Click to show full abstract

Although there is much active research on software-defined radios (SDRs) with receive (RX) or transmit (TX) functionality, little work has been done on SDR transceivers supporting frequency division duplex (FDD). In this paper, we present a new circuit concept in which a distributed TX circuit cancels the transmitted signal at a reverse RX port through destructive interference while adding signal constructively at a forward TX port. We pair the distributed transmitter with a receiver-tracking PA degeneration technique to suppress the injected noise from TX circuits in the RX band. The system does not require off-chip filters or circulators, but still achieves both SDR flexibility and both FDD and time division duplex function. Measurements from the transceiver implemented in 65-nm CMOS show a frequency tuning range of 0.3–1.6 GHz with TX–RX isolation >23 dB and transmitted power up to 19 dBm.

Keywords: integrated software; fully integrated; defined transceiver; wideband fully; software defined; software

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.