LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An Architecture for Large-Area Sensor Acquisition Using Frequency-Hopping ZnO TFT DCOs

Photo by cosmicwriter from unsplash

Hybrid systems combine large-area electronics (LAE) with silicon-CMOS ICs for sensing and computation, respectively. In such systems, interfacing a large number of distributed LAE sensors with the CMOS domain poses… Click to show full abstract

Hybrid systems combine large-area electronics (LAE) with silicon-CMOS ICs for sensing and computation, respectively. In such systems, interfacing a large number of distributed LAE sensors with the CMOS domain poses a key limitation. This paper presents an architecture that aims to greatly reduce both the number of physical connections and the time for accessing all of the sensors. Each sensor modulates the amplitude of a thin-film transistor (TFT) digitally controlled oscillator (DCO). All DCO outputs are combined, but each follows a unique frequency-hopping pattern (controlled by a code from CMOS), allowing recovery of the individual sensors. The architecture enables much greater scalability of sensors for a given number of connections than active-matrix and binary-addressing schemes. For demonstration, an 18-element large-area force-sensing system is demonstrated based on zinc-oxide (ZnO) TFT DCOs with a frequency-hopping rate of 4.2 kHz. Acquisition error $\leq $ 62 mVrms is achieved over 30 weight patterns.

Keywords: frequency hopping; zno tft; large area

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.