LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A 2.7 pJ/cycle 16 MHz, 0.7 $\mu\text{W}$ Deep Sleep Power ARM Cortex-M0+ Core SoC in 28 nm FD-SOI

Photo by dannyg from unsplash

The design of ultra-low-voltage microcontroller (MCU) systems with high energy-efficiency operations is a key concept to achieve fully autonomous energy-harvesting powered Internet-of-Things applications. In this paper, a system-on-chip (SoC) is… Click to show full abstract

The design of ultra-low-voltage microcontroller (MCU) systems with high energy-efficiency operations is a key concept to achieve fully autonomous energy-harvesting powered Internet-of-Things applications. In this paper, a system-on-chip (SoC) is presented, embedding an ARM® Cortex®-M0+ MCU, $2 \times 4$ KB SRAM, an ultra-low power frequency synthesizer, a custom power switch, and a power management unit enabling the active and sleep modes. The 28 nm fully depleted silicon-on-insulator (FD-SOI) technology has been used to fabricate the device. The whole system operates at a fixed voltage of 0.5 V, and can switch from active and sleep/deep sleep modes, adjusting its frequency from 16 to 8 MHz or 32 kHz in one cycle upon energy availability. Silicon measurements report an SoC’s power consumption of 2.7 pJ/cycle at 16 MHz during active mode, and a total power consumption of 0.7 $\mu \text{W}$ during deep sleep mode. By combining frequency and power modes switching with extra reverse body-biasing, the system power consumption is drastically reduced by $2\times $ and $61\times $ in, respectively, sleep and deep sleep modes.

Keywords: tex math; deep sleep; inline formula; power

Journal Title: IEEE Journal of Solid-State Circuits
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.